
SOLUTIONS FOR 2011 APMO PROBLEMS

Problem 1.

Solution: Suppose all of the 3 numbers a2 + b + c, b2 + c + a and c2 + a + b are
perfect squares. Then from the fact that a2 + b + c is a perfect square bigger than
a2 it follows that a2 + b + c ≥ (a + 1)2, and therefore, b + c ≥ 2a + 1. Similarly we
obtain c + a ≥ 2b + 1 and a + b ≥ 2c + 1.

Adding the corresponding sides of the preceding 3 inequalities, we obtain
2(a + b + c) ≥ 2(a + b + c) + 3, a contradiction. This proves that it is impos-
sible to have all the 3 given numbers to be perfect squares.

Alternate Solution: Since the given conditions of the problem are symmetric in
a, b, c, we may assume that a ≥ b ≥ c holds. From the assumption that a2+b+c is a
perfect square, we can deduce as in the solution above the inequality b+c ≥ 2a+1.
But then we have

2a ≥ b + c ≥ 2a + 1,

a contradiction, which proves the assertion of the problem.

Problem 2.

Solution: We will show that 36◦ is the desired answer for the problem.
First, we observe that if the given 5 points form a regular pentagon, then the

minimum of the angles formed by any triple among the five vertices is 36◦, and
therefore, the answer we seek must be bigger than or equal to 36◦.

Next, we show that for any configuration of 5 points satisfying the condition of
the problem, there must exist an angle smaller than or equal to 36◦ formed by a
triple chosen from the given 5 points. For this purpose, let us start with any 5
points, say A1, A2, A3, A4, A5, on the plane satisfying the condition of the problem,
and consider the smallest convex subset, call it Γ, in the plane containing all of the
5 points. Since this convex subset Γ must be either a triangle or a quadrilateral
or a pentagon, it must have an interior angle with 108◦ or less. We may assume
without loss of generality that this angle is ∠A1A2A3. By the definition of Γ it is
clear that the remaining 2 points A4 and A5 lie in the interior of the angular region
determined by ∠A1A2A3, and therefore, there must be an angle smaller than or

equal to
1
3
· 108◦ = 36◦, which is formed by a triple chosen from the given 5 points,

and this proves that 36◦ is the desired maximum.
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Problem 3.

Solution: Since ∠B1BB2 = 90◦, the circle having B1B2 as its diameter goes
through the points B, B1, B2. From B1A : B1C = B2A : B2C = BA : BC, it
follows that this circle is the Apolonius circle with the ratio of the distances from
the points A and C being BA : BC. Since the point P lies on this circle, we have

PA : PC = BA : BC = sin C : sin A,

from which it follows that PA sin A = PC sin C. Similarly, we have PA sin A =
PB sin B, and therefore, PA sin A = PB sin B = PC sin C.

Let us denote by D,E, F the foot of the perpendicular line drawn from P to the
line segment BC, CA and AB, respectively. Since the points E, F lie on a circle
having PA as its diameter, we have by the law of sines EF = PA sin A. Similarly,
we have FD = PB sin B and DE = PC sin C. Consequently, we conclude that
DEF is an equilateral triangle. Furthermore, we have ∠CPE = ∠CDE, since the
quadrilateral CDPE is cyclic. Similarly, we have ∠FPB = ∠FDB. Putting these
together, we get

∠BPC = 360◦ − (∠CPE + ∠FPB + ∠EPF )

= 360◦ − {(∠CDE + ∠FDB) + (180◦ − ∠FAE)}
= 360◦ − (120◦ + 150◦) = 90◦,

which proves the assertion of the problem.

Alternate Solution: Let O be the midpoint of the line segment B1B2. Then
the points B and P lie on the circle with center at O and going through the point
B1. From

∠OBC = ∠OBB1 − ∠CBB1 = ∠OB1B − ∠B1BA = ∠BAC

it follows that the triangles OCD and OBA are similar, and therefore we have that
OC ·OA = OB2 = OP 2. Thus we conclude that the triangles OCP and OPA are
similar, and therefore, we have ∠OPC = ∠PAC. Using this fact, we obtain

∠PBC − ∠PBA = (∠B1BC + ∠PBB1)− (∠ABB1 − ∠PBB1)

= 2∠PBB1 = ∠POB1 = ∠PCA− ∠OPC

= ∠PCA− ∠PAC,

from which we conclude that ∠PAC + ∠PBC = ∠PBA + ∠PCA. Similarly, we
get ∠PAB + ∠PCB = ∠PBA + ∠PCA. Putting these facts together and taking
into account the fact that

(∠PAC + ∠PBC) + (∠PAB + ∠PCB) + (∠PBA + ∠PCA) = 180◦,

we conclude that ∠PBA + ∠PCA = 60◦, and finally that

∠BPC = (∠PBA+∠PAB)+(∠PCA+∠PAC) = ∠BAC+(∠PBA+∠PCA) = 90◦,

proving the assertion of the problem.

Problem 4.

Solution: We will show that the desired maximum value for m is n(n− 1).
First, let us show that m ≤ n(n−1) always holds for any sequence P0, P1, · · · , Pm+1

satisfying the conditions of the problem.
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Call a point a turning point if it coincides with Pi for some i with 1 ≤ i ≤ m.
Let us say also that 2 points {P,Q} are adjacent if {P,Q} = {Pi−1, Pi} for some
i with 1 ≤ i ≤ m, and vertically adjacent if, in addition, PQ is parallel to the
y-axis.

Any turning point is vertically adjacent to exactly one other turning point.
Therefore, the set of all turning points is partitioned into a set of pairs of points
using the relation of ”vertical adjacency”. Thus we can conclude that if we fix
k ∈ {1, 2, · · · , n}, the number of turning points having the x-coordinate k must be
even, and hence it is less than or equal to n − 1. Therefore, altogether there are
less than or equal to n(n − 1) turning points, and this shows that m ≤ n(n − 1)
must be satisfied.

It remains now to show that for any positive odd number n one can choose a
sequence for which m = n(n − 1). We will show this by using the mathematical
induction on n. For n = 1, this is clear. For n = 3, choose

P0 = (0, 1), P1 = (1, 1), P2 = (1, 2), P3 = (2, 2),

P4 = (2, 1), P5 = (3, 1), P6 = (3, 3), P7 = (4, 3).

It is easy to see that these points satisfy the requirements (See fig. 1 below).

figure 1

Let n be an odd integer ≥ 5, and suppose there exists a sequence satisfying the
desired conditions for n−4. Then, it is possible to construct a sequence which gives
a configuration indicated in the following diagram (fig. 2), where the configuration
inside of the dotted square is given by the induction hypothesis:

figure 2

By the induction hypothesis, there are exactly (n − 4)(n − 5) turning points for
the configuration inside of the dotted square in the figure 2 above, and all of the
lattice points in the figure 2 lying outside of the dotted square except for the 4
points (n, 2), (n−1, n−2), (2, 3), (1, n−1) are turning points. Therefore, the total
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number of turning points in this configuration is

(n− 4)(n− 5) + (n2 − (n− 4)2 − 4) = n(n− 1),

showing that for this n there exists a sequence satisfying the desired properties,
and thus completing the induction process.

Problem 5.

Solution: By substituting x = 1 and y = 1 into the given identity we obtain
f(f(1)) = f(1). Next, by substituting x = 1 and y = f(1) into the given identity
and using f(f(1)) = f(1), we get f(1)2 = f(1), from which we conclude that either
f(1) = 0 or f(1) = 1. But if f(1) = 1, then substituting y = 1 into the given
identity, we get f(x) = x for all x, which contradicts the condition (1). Therefore,
we must have f(1) = 0.

By substituting x = 1 into the given identity and using the fact f(1) = 0, we
then obtain f(f(y)) = 2f(y) for all y. This means that if a number t belongs to the
range of the function f , then so does 2t, and by induction we can conclude that for
any non-negative integer n, 2nt belongs to the range of f if t does. Now suppose
that there exists a real number a for which f(a) > 0, then for any non-negative
integer n 2nf(a) must belong to the range of f , which leads to a contradiction to
the condition (1). Thus we conclude that f(x) ≤ 0 for any real number x.

By substituting x
2 for x and f(y) for y in the given identity and using the fact

that f(f(y)) = 2f(y), we obtain

f(xf(y)) + f(y)f
(x

2

)
= xf(y) + f

(x

2
f(y)

)
,

from which it follows that xf(y)−f(xf(y)) = f(y)f
(

x
2

)
−f

(
x
2 f(y)

)
≥ 0, since the

values of f are non-positive. Combining this with the given identity, we conclude

that yf(x) ≥ f(xy). When x > 0, by letting y to be
1
x

and using the fact that

f(1) = 0, we get f(x) ≥ 0. Since f(x) ≤ 0 for any real number x, we conclude that
f(x) = 0 for any positive real number x. We also have f(0) = f(f(1)) = 2f(1) = 0.

If f is identically 0, i.e., f(x) = 0 for all x, then clearly, this f satisfies the given
identity. If f satisfies the given identity but not identically 0, then there exists a
b < 0 for which f(b) < 0. If we set c = f(b), then we have f(c) = f(f(b)) = 2f(b) =
2c. For any negative real number x, we have cx > 0 so that f(cx) = f(2cx) = 0,
and by substituting y = c into the given identity, we get

f(2cx) + cf(x) = 2cx + f(cx),

from which it follows that f(x) = 2x for any negative real x.
We therefore conclude that if f satisfies the given identity and is not identically

0, then f is of the form f(x) =

{
0 if x ≥ 0
2x if x < 0.

Finally, let us show that the

function f of the form shown above does satisfy the conditions of the problem.
Clearly, it satisfies the condition (1). We can check that f satisfies the condition
(2) as well by separating into the following 4 cases depending on whether x, y are
non-negative or negative.

• when both x and y are non-negative, both sides of the given identity are 0.
• when x is non-negative and y is negative, we have xy ≤ 0 and both sides

of the given identity are 4xy.
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• when x is negative and y is non-negative, we have xy ≤ 0 and both sides
of the given identity are 2xy.
• when both x and y are negative, we have xy > 0 and both sides of the given

identity are 2xy.
Summarizing the arguments above, we conclude that the functions f satisfying the
conditions of the problem are

f(x) = 0 and f(x) =

{
0 if x ≥ 0
2x if x < 0.


